Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS One ; 16(12): e0259996, 2021.
Article in English | MEDLINE | ID: covidwho-1592627

ABSTRACT

OBJECTIVES: To evaluate (1) the relationship between heating, ventilation, and air conditioning (HVAC) systems and bioaerosol concentrations in hospital rooms, and (2) the effectiveness of laminar air flow (LAF) and high efficiency particulate air (HEPA) according to the indoor bioaerosol concentrations. METHODS: Databases of Embase, PubMed, Cochrane Library, MEDLINE, and Web of Science were searched from 1st January 2000 to 31st December 2020. Two reviewers independently extracted data and assessed the quality of the studies. The samples obtained from different areas of hospitals were grouped and described statistically. Furthermore, the meta-analysis of LAF and HEPA were performed using random-effects models. The methodological quality of the studies included in the meta-analysis was assessed using the checklist recommended by the Agency for Healthcare Research and Quality. RESULTS: The mean CFU/m3 of the conventional HVAC rooms and enhanced HVAC rooms was lower than that of rooms without HVAC systems. Furthermore, the use of the HEPA filter reduced bacteria by 113.13 (95% CI: -197.89, -28.38) CFU/m3 and fungi by 6.53 (95% CI: -10.50, -2.55) CFU/m3. Meanwhile, the indoor bacterial concentration of LAF systems decreased by 40.05 (95% CI: -55.52, -24.58) CFU/m3 compared to that of conventional HVAC systems. CONCLUSIONS: The HVAC systems in hospitals can effectively remove bioaerosols. Further, the use of HEPA filters is an effective option for areas that are under-ventilated and require additional protection. However, other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. LIMITATION OF STUDY: Although our study analysed the overall trend of indoor bioaerosols, the conclusions cannot be extrapolated to rare, hard-to-culture, and highly pathogenic species, as well as species complexes. These species require specific culture conditions or different sampling requirements. Investigating the effects of HVAC systems on these species via conventional culture counting methods is challenging and further analysis that includes combining molecular identification methods is necessary. STRENGTH OF THE STUDY: Our study was the first meta-analysis to evaluate the effect of HVAC systems on indoor bioaerosols through microbial incubation count. Our study demonstrated that HVAC systems could effectively reduce overall bioaerosol concentrations to maintain better indoor air quality. Moreover, our study provided further evidence that other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. PRACTICAL IMPLICATION: Our research showed that HEPA filters are more effective at removing bioaerosols in HVAC systems than the current LAF system. Therefore, instead of opting for the more costly LAF system, a filter with a higher filtration rate would be a better choice for indoor environments that require higher air quality; this is valuable for operating room construction and maintenance budget allocation.


Subject(s)
Air Conditioning/instrumentation , Air Pollution, Indoor/prevention & control , Environmental Monitoring/methods , Filtration/standards , Heating/instrumentation , Hospitals/standards , Ventilation/instrumentation , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Equipment and Supplies, Hospital , Humans
2.
Med Hypotheses ; 141: 109781, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-116780

ABSTRACT

The world is facing a pandemic of unseen proportions caused by a corona virus named SARS-CoV-2 with unprecedent worldwide measures being taken to tackle its contagion. Person-to-person transmission is accepted but WHO only considers aerosol transmission when procedures or support treatments that produce aerosol are performed. Transmission mechanisms are not fully understood and there is evidence for an airborne route to be considered, as the virus remains viable in aerosols for at least 3 h and that mask usage was the best intervention to prevent infection. Heating, Ventilation and Air Conditioning Systems (HVAC) are used as a primary infection disease control measure. However, if not correctly used, they may contribute to the transmission/spreading of airborne diseases as proposed in the past for SARS. The authors believe that airborne transmission is possible and that HVAC systems when not adequately used may contribute to the transmission of the virus, as suggested by descriptions from Japan, Germany, and the Diamond Princess Cruise Ship. Previous SARS outbreaks reported at Amoy Gardens, Emergency Rooms and Hotels, also suggested an airborne transmission. Further studies are warranted to confirm our hypotheses but the assumption of such way of transmission would cause a major shift in measures recommended to prevent infection such as the disseminated use of masks and structural changes to hospital and other facilities with HVAC systems.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Environment, Controlled , Pandemics , Pneumonia, Viral/transmission , Ventilation , Aerosols , Air Conditioning/adverse effects , Air Conditioning/instrumentation , Air Conditioning/methods , Air Pollution, Indoor , COVID-19 , Coronavirus Infections/prevention & control , Cross Infection/transmission , Equipment Contamination , Equipment Design , Equipment Failure , Fomites/virology , Heating/adverse effects , Heating/instrumentation , Heating/methods , Humans , Legionnaires' Disease/epidemiology , Legionnaires' Disease/transmission , Models, Biological , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Sanitary Engineering/instrumentation , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Sewage/virology , Ventilation/instrumentation , Ventilation/methods
SELECTION OF CITATIONS
SEARCH DETAIL